

Town-centre Redevelopment Improvement Project (TRIP)

National Productivity Investment Fund

Department for Transport

National Productivity Investment Fund for the Local Road Network Application Form

The level of information provided should be proportionate to the size and complexity of the project proposed. As a guide, for a small project we would suggest around 10-15 pages including annexes would be appropriate.

One application form should be completed per project and will constitute a bid.
Applicant Information
Local authority name(s)*: Southend-on-Sea Borough Council
*If the bid is for a joint project, please enter the names of all participating local authorities and specify the lead authority.

Bid Manager Name and position: Paul Mathieson - Group Manager
Name and position of officer with day to day responsibility for delivering the proposed project.
Contact telephone number: 01702215321 Email address: paulmathieson@southend.gov.uk
Postal address: Department for Place
Southend-on-Sea Borough Council
Civic Centre
Victoria Avenue
Southend-on-Sea
SS2 6ER
Combined Authorities
If the bid is from an authority within a Combined Authority, please specify the contact, ensure that the Combined Authority has provided a note ranking multiple applications, and append a copy to this bid.

Name and position of Combined Authority Bid Co-ordinator: N/A
Contact telephone number: N/A Email address: N/A
Postal address: N/A

When authorities submit a bid for funding to the Department, as part of the Government's commitment to greater openness in the public sector under the Freedom of Information Act 2000 and the Environmental Information Regulations 2004, they must also publish a version excluding any commercially sensitive information on their own website within two working days of submitting the final bid to the Department. The Department reserves the right to deem the business case as non-compliant if this is not adhered to.
Please specify the weblink where this bid will be published: www.southend.gov.uk

A1. Project name: Town-centre Redevelopment Improvement Project (TRIP)

A2 : Please enter a brief description of the proposed project (no more than 50 words)

 Improving local access to the town centre, bus interchange and rail stations by redirecting car parking traffic, improving public realm and modifying the highway. The proposals facilitate a wider network redistribution by ensuring the most appropriate travel routes and smart guidance making the area more viable for new development opportunities```
A3 : Please provide a short description of area covered by the bid (no more than 50 words)
The area is within the Borough of Southend-on-Sea focussing on the Town Centre. This represents a key location for leisure, tourism, commercial, residential and business activity and identified within the Southend Central Area Action Plan (SCAAP).
OS Grid Reference: TQ 8829385614
Postcode: SS1
Please append a map showing the location (and route) of the project, existing transport infrastructure and other points of particular relevance to the bid, e.g. housing and other development sites, employment areas, air quality management areas, constraints etc.
```

A4. How much funding are you bidding for? (please tick the relevant box):
Small project bids (requiring DfT funding of between £2m and £5m) $\boxtimes$
Large project bids (requiring DfT funding of between $£ 5 \mathrm{~m}$ and $£ 10 \mathrm{~m}$ ) $\quad \square$

A5. Has any Equality Analysis been undertaken in line with the Equality Duty?
$\square$ Yes $\quad$ No
Equality Analysis is being considered throughout the consultation process, the formal Equality Analysis is scheduled to be completed by December 2017

A6. If you are planning to work with partnership bodies on this project (such as Development Corporations, National Parks Authorities, private sector bodies and transport operators) please include a short description below of how they will be involved.

Local bus operators and the train operating companies will be included in the project delivery to ensure that the benefits can be realised in increasing passenger numbers to support growth. The Southend Business Improvement District (BID) will be involved to ensure business representation in the project

A7. Combined Authority (CA) Involvement
Have you appended a letter from the Combined Authority supporting this bid? N/A
A8. Local Enterprise Partnership (LEP) Involvement and support for housing delivery Have you appended a letter from the LEP supporting this bid? $\boxtimes$ Yes

For proposed projects which encourage the delivery of housing, have you appended supporting evidence from the housebuilder/developer?Yes
No

## SECTION B - The Business Case

## B1: Project Summary

Please select what the project is trying to achieve (select all categories that apply)

## Essential

E Ease urban congestion
U Unlock economic growth and job creation opportunities
$\boxtimes$ Enable the delivery of housing development

## Desirable

Ø Improve Air Quality and /or Reduce CO2 emissions
$\square$ Incentivising skills and apprentices
$\square$ Other(s), Please specify -

B2 : Please provide evidence on the following questions (max 100 words for each question):
a) What is the problem that is being addressed?

Around one third of trips to the town centre are made by car, one third by walking and cycling and one third using the bus and train. Traffic arrives along two major routes (A127 and A13) and is then directed around or through the central area. This leads to congestion, especially during high seasonal peaks, which limits economic growth and residential development. Congestion also interferes with the potential to improve facilities for walking, cycling and public transport access. Traffic accessing the main car parks circulates unnecessarily and leads to confusion over access, parking and alternatives.
b) What options have been considered and why have alternatives been rejected?

Minor modifications to existing signage have been considered, but rejected because they do not provide the necessary reduction in traffic that would act as a catalyst to encourage the necessary modal shift that can be achieved, as evidenced by the recent SBC LSTF project delivering personalised travel planning. A number of trips to the town centre commence out of town and the current systems and infrastructure tends to route most traffic into the town centre, upgrading capacity in the town centre is not feasible, but the smart management of signage, routeing and access with localised improvements is preferred.
c) What are the expected benefits/outcomes? For example, could include easing urban congestion, job creation, enabling a number of new dwellings, facilitating increased GVA.

Redistribution of the inbound Town Centre/Seafront traffic, facilitated by new VMS and car park guidance systems strategy will be supported by the re-configuration to the Town Centre car parks access and associated public realm improvements to the public transport and walking and cycling routes. This directly supports the proposed Better Queensway scheme delivering a minimum of 441 affordable new homes and the Southend Central Area Action Plan (SCAAP) which sets out to deliver a total of 2166 new dwellings and 7250 new jobs up to 2021, including new development sites. The project will also reduce severance and improve air quality.

[^0]d) Are there are any related activities that the success of this project relies upon? For example, land acquisition, other transport interventions requiring separate funding or consents?

None
e) What will happen if funding for this project is not secured - would an alternative (lower cost) solution be implemented (if yes, please describe this alternative and how it differs from the proposed project)?

A reduced scheme focusing purely on the VMS element of the overall project would be implemented. This element would focus on the routing of vehicles into the town and not address any of the other issues highlighted above.
f) What is the impact of the project - and any associated mitigation works - on any statutory environmental constraints? For example, Local Air Quality Management Zones.

The easing of the flow through the AQMA towards the town centre as part of the signing strategy will ease congestion and improve air quality within the AQMA.

B3 : Please complete the following table. Figures should be entered in £000s (i.e. $£ 10,000=10$ ).

Table A: Funding profile (Nominal terms)

| £O00s | 2018-19 | 2019-20 |  |
| :--- | ---: | ---: | :---: |
| DfT funding sought | 515 | 1235 |  |
| Local Authority contribution | 485 | 265 |  |
| Third Party contribution | N/A | N/A |  |
| TOTAL | 1000 | 1500 |  |

Notes:

1) Department for Transport funding must not go beyond 2019-20 financial year.
2) Bidders are asked to consider making a local contribution to the total cost. It is indicated that this might be around 30\%, although this is not mandatory.

B4 : Local Contribution \& Third Party Funding : Please provide information on the following questions (max 100 words on items $a$ and b):
a) Provide an outline of all non-DfT funding contributions to the project costs, the level of commitment, and when the contributions will become available.

By 2018/19 the CIL fund is expected to be approximately £500k. It is anticipated that at least £100k of this money can support this bid.
b) List any other funding applications you have made for this project or variants thereof and the outcome of these applications, including any reasons for rejection.

A successful bid for Southend Borough Council Capital funding for the signing strategy has been made and forms some of the Local Contribution.

## B5 Economic Case

This section should set out the range of impacts - both beneficial and adverse - of the project. The scope of information requested (and in the supporting annexes) will vary, including according to whether the application is for a small or large project.

## A) Requirements for small project bids (i.e. DfT contribution of less than $£ 5 \mathrm{~m}$ )

a) Please provide a description of your assessment of the impact of the project to include:

- Significant positive and negative impacts (quantified where possible) including in relation to air quality and $\mathrm{CO}_{2}$ emissions.
- A description of the key risks and uncertainties;
- If any modelling has been used to forecast the impact of the project please set out the methods used to determine that it is fit for purpose

The Town-centre Redevelopment Improvement Project (TRIP) is expected to give rise to a wide range of economic, environmental, and social benefits. The primary benefits are the journey time savings and journey time reliability improvements that are expected to result from reduced traffic congestion in the central area. The estimated monetised benefit associated with journey time savings is $£ 46$ million (all users combined, full appraisal period, 2017 prices discounted to 2010).

A number of other benefits arise as a direct result of the public realm improvements, made possible because of reduced traffic flows on Chichester Road. Key environmental benefits relate to improved air quality, as pedestrians in the central area will be less exposed to traffic emissions, and the ability to restore a sense of place (townscape benefits). Key social benefits that are expected to arise relate to improved journey quality, increased physical activity, reduced road accidents, increased access to services, and reduced severance. Social benefits arise as a result of reduced traffic flows and improved public realm.

By improving the efficiency of the transport network within the central area, the scheme will help to unlock economic development opportunities. The scheme will also directly support the Better Queensway scheme, delivering at least 441 affordable new homes.

An Appraisal Summary Table (AST) is attached to this submission, to outline the expected impacts against all of the WebTAG sub-criteria.

Negative impacts are expected to be minimal and are in all cases offset by positive impacts. For example, increased traffic flows on Whitegate Road and York Road (due to the amended junction arrangements) will increase noise to some residential properties. However, noise and vibration impacts will reduce on Chichester Road and Southchurch Road. Similarly, a slight increase in road accidents might be expected to occur at the new Queensway junctions, while a reduced frequency of accidents is expected on Chichester Road and at the Southchurch Road/ Chichester Road junction.

The two key risks associated with TRIP are:

- Stakeholder buy-in: Works are proposed in highly sensitive locations within the town centre, which will require buy-in from residents, commuters, and business owners. Failure to manage stakeholder involvement effectively could lead to delays and cost overruns.
- Cost and programme overruns, which will be avoided wherever possible through effective project management. The QRA identified that key cost risks exist in relation to the variable message sign and landscaping components, as well as uncertain ground conditions.

Transport Modelling
Journey time forecasts have been made using an existing VISSIM micro-simulation model of the town centre. A separate technical note is attached to this submission, outlining the modelling methodology, key assumptions and a more detailed junction by junction impact assessment.

The VISSIM model used was validated for a 2014 base year during 2016, and has been run with 16 different random seeds in the Do-Something scenario. Further details on the VISSIM model can be found in the companying economic technical note.

Values of time from the March 2017 WebTAG Data Book have been applied to the model forecasts in order to calculate the monetised value of journey time savings. The estimated BCR for the scheme is just under 20, representing very high value for money. This high BCR arises because the scheme is expected to lead to substantial benefits for a comparatively low price.

* Small projects bids are not required to produce a Benefit Cost Ratio (BCR) but may want to include this here if available.
b) Small project bidders should provide the following in annexes as supporting material:

Has a Project Impacts Pro Forma been appended?


Other material supporting your assessment of the project described in this section should be appended to the bid.

* This list is not necessarily exhaustive and it is the responsibility of bidders to provide sufficient information to demonstrate the analysis supporting the economic case is fit-for-purpose.
B) Additional requirements for large project bids (i.e. DfT contribution of more than $£ 5 \mathrm{~m}$ )
c) Please provide a short description (max 500 words) of your assessment of the value for money of the project including your estimate of the Benefit Cost Ratio (BCR) to include:
- Significant monetised and non-monetised costs and benefits
- Description of the key risks and uncertainties and the impact these have on the BCR;
- Key assumptions including: appraisal period, forecast years, optimism bias applied; and
- Description of the modelling approach used to forecast the impact of the project and the checks that have been undertaken to determine that it is fit-for-purpose.

N/A
d) Additionally detailed evidence supporting your assessment, including the completed Appraisal Summary Table, should be attached as annexes to this bid. A checklist of material to be submitted in support of large project bids has been provided.
Has an Appraisal Summary Table been appended? $\quad \square$ Yes $\quad \square$ No $\boxtimes$ N/A

- Please append any additional supporting information (as set out in the Checklist).
*/t is the responsibility of bidders to provide sufficient information for DfT to undertake a full review of the analysis.

B6 Economic Case: For all bids the following questions relating to desirable criteria should be answered.

Please describe the air quality situation in the area where the project will be implemented by answering the three questions below.
i) Has Defra's national air quality assessment, as reported to the EU Commission, identified and/or projected an exceedance in the area where the project will be implemented?
$\square$ Yes $\quad \boxtimes$ No
ii) Is there one or more Air Quality Management Areas (AQMAs) in the area where the project will be implemented? AQMAs must have been declared on or before the 31 March 2017
$\square$ Yes
® No
iii) What is the project's impact on local air quality?
Q Positive
$\square$ Neutral
$\square$ Negative

- Please supply further details:

The proposed works will actively alter traffic flows from busy pedestrian areas to main traffic routes thus reducing pollution and improving air quality in the town centre. Furthermore, the creation of a transport hub intends to reduce vehicle movements
iv) Does the project promoter incentivise skills development through its supply chain?Yes $\square$ No N/A

- Please supply further details:


## B7. Management Case - Delivery (Essential)

Deliverability is one of the essential criteria for this Fund and as such any bid should set out, with a limit of 100 words for each of a) to b), any necessary statutory procedures that are needed before it can be constructed.
a) A project plan (typically summarised in Gantt chart form) with milestones should be included, covering the period from submission of the bid to project completion.

Has a project plan been appended to your bid?
b) If delivery of the project is dependent on land acquisition, please include a letter from the respective land owner(s) to demonstrate that arrangements are in place to secure the land to enable the authority to meet its construction milestones.

Has a letter relating to land acquisition been appended? $\square$ Yes
No
c) Please provide in Table C summary details of your construction milestones (at least one but no more than 6) between start and completion of works:

Detailed Design to commence 04/04/2018
Construction start date 31/10/2018
Queensway Car Park Access 31/10/2018
Bournemouth Park Road Junction 31/10/2018
Transport Interchange Public Realm Start 29/04/2019
VMS installations 16/09/2019
Opening date 30/03/2020
Completion of works (if different)
d) Please list any major transport projects costing over £5m in the last 5 years which the authority has delivered, including details of whether these were completed to time and budget (and if not, whether there were any mitigating circumstances)

Southend have carried out a number of schemes identified under the "Better Southend" Programme and were completed on time and to budget.

A127/B1013 Tesco Junction Improvement £4.7 m (DfT \& SBC funded)
A127 Progress Road Junction Improvement £4.7m (HCA \& SBC funded)
A127 Cuckoo Corner Junction Improvement £5m (DfT \& SBC funded)
A127 Victoria Gateway £6.7m (HCA \& SBC funded)
City Beach £6.7m (HCA \& SBC funded)

## B8. Management Case - Statutory Powers and Consents (Essential)

a) Please list if applicable, each power / consent etc. already obtained, details of date acquired, challenge period (if applicable), date of expiry of powers and conditions attached to them. Any key dates should be referenced in your project plan.

None Required
b) Please list if applicable any outstanding statutory powers / consents etc. including the timetable for obtaining them.

None Required

## B9. Management Case - Governance (Essential)

Please name those who will be responsible for delivering the project, their roles (Project Manager, SRO etc.) and responsibilities, and how key decisions are/will be made. An organogram may be useful here.


Southend-on-Sea Borough Council has an excellent record of delivering projects on time and within budget. The 'Better Southend' projects, including the A127 Progress Road Junction Improvement, the A127 Cuckoo Corner Junction Improvement, A127/A13 Victoria Gateway and City Beach Improvements and the recently completed A127 Tesco Junction Improvements were all completed on time and within budget.

Andrew Lewis - Deputy Chief Executive (Place). There is Executive Director support for the NPIF, which experience has shown is essential for success. Andy will be ultimately responsible for the programme. He will ensure the all elements are correctly focused on achieving its aims, objectives and outcomes.

Peter Geraghty - Director of Planning and Transport. Peter is the Director of Service responsible for managing the strategic planning and transport functions. He will oversee the budgetary requirements and approve the resourcing and investment programme.

Pau Mathieson - Group Manager - Major Project and Strategic Transport Policy - SRO Paul is responsible for managing the Strategic Transport function and will oversee the budgetary requirements, resourcing and investment on this project.

Neil Hoskins - Programme Manager - Major Projects and Strategic Transport Policy - PM Neil will be responsible for the project management ensuring that the project is aligned with the bid objectives and that the appropriate monitoring is implemented to assess progress on key outputs.

## B10. Management Case - Risk Management (Essential)

All projects will be expected to undertake a Quantified Risk Assessment (QRA) and a risk register should be included. Both should be proportionate to the nature and complexity of the project. A Risk Management Strategy should be developed that outlines how risks will be managed.

Please ensure that in the risk / QRA cost that you have not included any risks associated with ongoing operational costs and have used the P50 value.

Has a QRA been appended to your bid?

| $\boxtimes$ Yes | $\square$ No |
| :--- | :--- |
| $\boxtimes$ Yes | $\square$ No |

Has a Risk Management Strategy been appended to your bid?
Yes No

Please provide evidence on the following points (where applicable) with a limit of 50 words for each:
a) What risk allowance has been applied to the project cost?

A risk allowance of approximately $10 \%$ has been allocated to the scheme which will be used in the event of cost overrun. There is also a 4 month float in the programme should there be any delays.
b) How will cost overruns be dealt with?

Effective project planning and stakeholder engagement will mitigate against the risk of cost overrun. Any cost overrun will be covered by the risk allowance
c) What are the main risks to project timescales and what impact this will have on cost?

Stakeholders - High profile/politically sensitive routes which will require 'buy in' from all stakeholders from businesses to councillors. Potential delay to programme if these relationships are not effectively managed, could result in increased costs

## B11. Management Case - Stakeholder Management (Essential)

The bid should demonstrate that the key stakeholders and their interests have been identified and considered as appropriate. These could include other local authorities, the Highways England, statutory consultees, landowners, transport operators, local residents, utilities companies etc. This is particularly important in respect of any bids related to structures that may require support of Network Rail and, possibly, train operating company(ies).
a) Please provide a summary in no more than 100 words of your strategy for managing stakeholders, with details of the key stakeholders together with a brief analysis of their influences and interests.

Identify all stakeholders and catagorise them into groups based on their interest and influence on the project. Targeted, early \& frequent consultation at the appropriate level for the different groups will create positive relationships and manage expectations. See table below for key stakeholders and interest/influence

| SBC (Staff/Councillors) | Scheme promoter and funder | Very High |
| :--- | :--- | :--- |
| SBC Portfolio holder | Scheme promoter | Very High |
| SELEP | Economic development | Very High |
| Local businesses | Disruption during construction | Medium |
| Local residents | Noise/visual impact and congestion | Medium |
| Bus operators | Quality of infrastructure | Medium |
| Rail operators | Quality of infrastructure | Medium |
| Local Media | Public realm, economic benefits | Medium |
| Local MP's | Impact on local economy | High |
| Environment Agency | Flood management \& ecology | Medium |
| DfT | Funder | Very High |
| Disability User Groups | Accessibility | Low |

b) Can the project be considered as controversial in any way? $\quad \square$ Yes $\boxtimes$ No If yes, please provide a brief summary in no more than 100 words N/A
c) Have there been any external campaigns either supporting or opposing the project?
$\square$ Yes
® No

If yes, please provide a brief summary (in no more than 100 words) N/A
d) For large projects only please also provide a Stakeholder Analysis and append this to your application.

Has a Stakeholder Analysis been appended?
$\square$ Yes $\quad \square$ No $\quad$ N/A
e) For large projects only please provide a Communications Plan with details of the level of engagement required (depending on their interests and influence), and a description of how and by what means they will be engaged with.

Has a Communications Plan been appended?
$\square$ Yes
$\square \mathrm{No}$
N/A

## B12. Management Case - Local MP support (Desirable)

e) Does this proposal have the support of the local MP(s);

MPs have been contacted and awaiting their support. Letters of support from the local MP will be forwarded.

Name of MP(s) and Constituency

| 1 James Duddridge - Rochford \& Southend East | $\square$ Yes | $\boxed{\text { No }}$ |
| :--- | :--- | :--- |
| 2 Sir David Amess - Southend West | $\square$ Yes | $\boxed{\text { No }}$ |
| 3 N/A | $\square$ Yes | $\square$ No |

## B13. Management Case - Assurance (Essential)

We will require Section 151 Officer confirmation (Section D) that adequate assurance systems are in place.

Additionally, for large projects please provide evidence of an integrated assurance and approval plan. This should include details of planned health checks or gateway reviews.

## SECTION C - Monitoring, Evaluation and Benefits Realisation

C2. Please set out, in no more than 100 words, how you plan to measure and report on the benefits of this project, alongside any other outcomes and impacts of the project.

Extensive 'before' survey have been undertaken, including vehicle and pedestrian movements along with cycle counts. Post implementation of each project the surveys will be repeated and compared with the original. This will include any reduction user delays and an evaluation report will be produced. This will be combined with the stage 3 safety audit and any amendments implemented. A further survey will be conducted a year post completion as part of a stage 4 safety audit and a final evaluation report produced.

A fuller evaluation for large projects may also be required depending on their size and type.

## B13. Management Case - Assurance (Essential)

We will require Section 151 Officer confirmation (Section D) that adequate assurance systems are in place.

Additionally, for large projects please provide evidence of an integrated assurance and approval plan. This should include details of planned health checks or gateway reviews.

## SECTION C - Monitoring, Evaluation and Benefits Realisation

C2. Please set out, in no more than 100 words, how you plan to measure and report on the benefits of this project, alongside any other outcomes and impacts of the project.

Extensive 'before' survey have been undertaken, including vehicle and pedestrian movements along with cycle counts. Post implementation of each project the surveys will be repeated and compared with the original. This will include any reduction user delays and an evaluation report will be produced. This will be combined with the stage 3 safety audit and any amendments implemented. A further survey will be conducted a year post completion as part of a stage 4 safety audit and a final evaluation report produced.

A fuller evaluation for large projects may also be required depending on their size and type.

## D1. Senior Responsible Owner Declaration

As Senior Responsible Owner for Town Centre Redevelopment Improvement Scheme I hereby submit this request for approval to DIT on behalf of Southend-on-Sea Borough Council and confirm that I have the necessary authority to do so

I confirm that Southend-on-Sea Borough Council will have all the necessary statutory powers in place to ensure the planned timescales in the application can be realised.

Name. Paul Matheson
Position Group Manager - Major Projects \& Strategic Transport Policy

Signed.


## D2. Section 151 Officer Declaration

As Section 151 Officer for Southend-on-Sea Borough Council I declare that the project cost estimates quoted in this bid are accurate to the best of my knowledge and that Southend-on-
Sea Borough Council

- has allocated sufficient budget to deliver this project on the basis of its proposed funding contribution
- accepts responsibility for meeting any costs over and above the DIT contribution requested, including potential cost overruns and the underwriting of any funding contributions expected from third parties
- accepts responsibility for meeting any ongoing revenue requirements in relation to the project
- accepts that no further increase in DiT funding will be considered beyond the maximum contribution requested and that no DfT funding will be provided for this bid in 2020/21.
- confirms that the authority has the necessary governance / assurance arrangements in place and, for smaller project bids, the authority can provide, if required, evidence of a stakeholder analysis and communications plan in place
- confirms that if required a procurement strategy for the project is in place, is legally compliant and is likely to achieve the best value for money outcome

Name: Joe Chesterton


Signed.
30/06/2017

## HAVE YOU INCLUDED THE FOLLOWING WITH YOUR BID?



## National Productivity Fund

## Application Form - Town-centre Redevelopment Improvement Project (TRIP)

## Annexes

Annex 1a - Southend Area Plan
Annex 1b - SCAAP Public Transport \& Access
Annex 2 - Modelling and Economics Methodology
Annex 3 - LEP support Letter
Annex 4 - Projects Impact Pro forma
Annex 5 - Project Plan/Gantt Chart
Annex 6 - Appraisal summary table
Annex 7 - Quantified Risk Assessment

Southend on Sea Borough Council - June 2017

Southend Area Plan



## Southend Central Area Boundary

L- 1 Southend Central Area Boundary Taxi Ranks
(1) Taxi Rank

## Parking

Off Street Key Visitor Parking
——On Street Payment Parking

## Public Transport and Access

- Railway Station
- Railway Line
- Bus Stop
——Bus Route - Road served at least 5 days a week
$\square$ Improved Gateway Access for Pedestrians
Main Route Network - Crossing and Environmental Improvements
Proposed Strategic Junction Improvement
Enhanced Travel Connectivity
N New schemes


## Project: Southend NPIF Bid

Prepared by: Matt Hall
Approved by:
Matt Hall

Date: $\quad 28^{\text {th }}$ June 2017

Checked by: Mike Brodrick

Subject:
NPIF Traffic Modelling and Economics

## 1 Introduction

Mott MacDonald was commissioned by Southend Borough Council (SBC) to assess improvement schemes on the Queensway to provide new right turn access into key car parks accessed from Whitegate Road and York Road and a scheme to signalise the junction of Eastern Avenue / Bournemouth Park Road and provide a right turn out from Bournemouth Park Road. The assessment made use of an existing VISSIM microsimulation model of the Town Centre that was used in a business case last year in addition to the highway model of the Southend-on-Sea Multi Modal Model (SoSMMM).
The Town Centre VISSIM model extents are shown below in Figure 1.1.


Figure 1.1 - Town Centre VISSIM Model Extents

This document is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

## 2 Modelling Methodology

### 2.1 Introduction

The Town Centre VISSIM model was validated for a 2014 base and reported in the Southend-on-Sea S-CATS VISSIM Modelling Assessment report of April 2016. Therefore, as the base model has already been validated forecast models have been prepared for 2021 based on a combination of TEMPRO growth and reassignment information from the Highway Assignment model of the SoSMMM.

The VISSIM model routes traffic based on dynamic assignment within the Town Centre. This allows for reassignment of traffic given changes in infrastructure. In order to incorporate the Bournemouth Park Road junction the model was extended to incorporate an isolated section of network to cover Eastern Avenue and Bournemouth Park Road. This section was then based on static assignment as it contains no route choice. The methodology was adopted as the section is too far from the main model to be incorporated into the dynamic model but retaining it within the same model as an isolated section allows for the network performance results to be collected from the same model.

The revised model extents are shown in Figure 2.1 below.


Figure 2.1 - Revised Model Extents to include Bournemouth Park Road / Eastern Avenue

The VISSIM modelling has been undertaken using VISSIM 5.40-13 as per the previous base model and the initial model developed by Atkins. The AM and PM peak periods have been modelled representing 7:00-10:00 in the morning peak and 16:00-19:00 in the evening peak respectively. A 15 minute warm-up period has been included to load the network before analysis.

The following modelling outputs as measures of effectiveness have been recorded:

- General network performance statistics; and,
- Junction analysis - Including volume, queue length, delay and level of service.


### 2.2 2021 Forecast Method

The forecast demand has been derived with two methods for the different sections within the model. The main Town Centre model has retained the method used for the recent S-CATS business case as follows:

The forecast to 2021 has been based on a combination of known specific developments and TEMPRO background growth. The known developments are as follows:

- Residential Development on the former Hollybrook College Site on Carnarvon Road; and,
- Expansion of Great Eastern Street Car Park.

The former consists of 158 residential flats. The trip generation for the development has been based figures provided in the Mayer Brown Transport Statement (TS), dated May 2015. Trip rates are presented in the TS from TRICS for privately owned residential flats. These have been utilised within the VISSIM model to calculate the traffic generation for each hour within the peak periods (as the original TS only summarised the peak hours).

The latter is an expansion of the Great Eastern Street Car Park in order to accommodate 195 additional spaces. The trips have been calculated assuming 75\% occupancy with an $80 \% / 20 \%$ split of peak direction/non-peak direction. The profile of each half an hour period has been derived based on the proportion of existing trips within each half an hour period.

Both of the above developments have then been distributed to existing zones based upon the existing zone 41092 (Civic Centre car park). This zone was selected as it represented the most likely distribution of trips from within the local vicinity.

The development trips have been assigned as a separate user class within the model so that they can be easily identified within the model.

Background growth has been applied to the existing traffic based upon adjusted TEMPRO forecasts for Southend to 2021. The above development traffic has been deducted from the AF09 adjusted TEMPRO forecast to result in $8.3 \%$ and $8.5 \%$ growth in the AM and PM peak period respectively.

The forecast demand for the Bournemouth Park Road area has been based on the Southend Highway Assignment model (HAM) which is part of the SoSMMM. The HAM has been used to derive growth and reassignment of traffic to the forecast year of 2021. The following process has been used:

- Extract Base SoSMMM turning movements by user class for the Bournemouth Park Road / Eastern Avenue junction;
- Apply a TEMPRO 7.2 factor of $4.5 \%$ to the base model cordon matrices by user class to rebase to 2014 consistent with the VISSIM model;
- Code in new infrastructure into 2021 HAM and run;
- Cordon 2021 Forecast HAM;
- Deduct the 2021 Forecast HAM cordon matrices by user class from the Base matrices; and,
- Apply the differences to the base VISSIM matrices.

The resulting matrices have then been converged and assigned within the VISSIM models.

### 2.3 2021 Do Minimum Scenario

The 2021 Do Minimum scenario utilised the 2021 forecast demand as described above, assigned to the existing road network.

### 2.42021 Do Something Scheme

The 2021 Do Something scheme provides 3 infrastructure improvements as follows:

- Queensway Southbound right turn to Whitegate Road to provide easier access to the Warrior Square Car Park;
- Queensway Southbound right turn to York Road to provide easier access to the Tylers Avenue Car Park. Note this also involves reversing the staggered pedestrian crossing over Queensway; and,
- Provide a northbound right turn from Bournemouth Park Road onto Eastern Avenue and signalise the junction.

Drawings for all 3 schemes are provided in Appendix A.
Note that the latter of the 3 schemes has been included in order to accommodate a predicted increased demand for a development and highway scheme that SBC consider to be highly likely. However, as it is not yet committed this has not been included within the VISSIM model.

In addition, the traffic signals on Victoria Avenue have been optimised in LinSig to provide co-ordinated control compared to the existing Vehicle Actuated (VA) control.

The model results have been used to predict the benefits of the schemes and incorporated into a business case to be submitted for the National Productivity Investment Fund.

## 3 Model Results

### 3.1 Introduction

The VISSIM models have been run with 16 different random seeds with the Do Something model compared to the Do Something Opt. Outputs are compared for junction (node) and network performance.

### 3.2 AM Peak

The junction performance comparison for the AM peak is shown in Table 3.1 below for the peak modelled hour period, for volume, average queue length in meters, delay in seconds and the Level of Service (LOS). The light blue shaded cells represent the optimal performer for each junction and each measure. The full output for all junctions and all time periods is shown in Appendix B.

The LOS is an American concept derived from their Highway Capacity Manual (2000). It rates performance based upon delay thresholds on an A to F grading as follows:

- LOS A - 0 to 10 seconds;
- LOS B - 10 to 20 seconds ( 10 to 15 seconds for unsignalised);
- LOS C - 20 to 35 seconds ( 15 to 25 seconds for unsignalised);
- LOS D - 35 to 55 seconds ( 25 to 35 seconds for unsignalised);
- LOS E - 55 to 80 seconds ( 35 to 50 seconds for unsignalised); and,
- LOS F - Over 80 seconds (over 50 seconds for unsignalised).

Table 3.1 shows that the DS processes more traffic than the DM at nearly all junctions, particularly in the 08300900 period. It also shows that the average queue length, average delay and LOS reduce at the majority of junctions.

The overall delay reduces with the DS and results in an overall LOS of E for the network compared to a LOS of $F$ in the $D M$.

Table 3.1 - Junction Performance Comparison - 2021 AM Peak

| Time | Node | Description | Volume |  | Q Length (m) Max |  | Q Length (m) Average |  | Delay (s) |  | LOS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | DM | DS |
| $\begin{aligned} & \text { O} \\ & 0 \\ & 1 \\ & 1 \\ & \hline 8 \\ & \hline 0 \end{aligned}$ | 2011 | Queensway/Chancellor | 682 | 653 | 30.8 | 27.4 | 0.3 | 0.3 | 4.6 | 4.4 | A | A |
|  | 2022 | Heygate/Chichester | 294 | 207 | 15 | 8.7 | 0.2 | 0.1 | 3.4 | 2.5 | A | A |
|  | 2024 | Pier Hill/Marine Parade | 669 | 670 | 20.7 | 13.5 | 0.1 | 0 | 8.3 | 8.6 | A | A |
|  | 2041 | Alexandra/Clarence | 338 | 318 | 56 | 43.8 | 7.9 | 6.3 | 0.0 | 0.0 | A | A |
|  | 2042 | Cliftown/Clarence | 264 | 264 | 60 | 83.4 | 10.1 | 15.3 | 3.5 | 5.8 | A | A |
|  | 2051 | Chichester/Tylers | 313 | 265 | 2.8 | 1.5 | 0 | 0 | 33.3 | 35.0 | C | C |
|  | 2056 | Queensway/York Rd | 582 | 644 | 129.1 | 142.8 | 35.2 | 42.3 | 33.9 | 35.6 | C | D |
|  | 2065 | Queensway/Whitegate Road | 0 | 639 | 0 | 31.8 | 0 | 0.1 | 0.0 | 0.2 | 0 | A |
|  | 2081 | Queensway/Chichester Road | 864 | 857 | 45.3 | 44.3 | 7.3 | 7.6 | 25.8 | 24.5 | C | C |
|  | 2083 | Chichester/Southchurch | 160 | 255 | 65.8 | 33.8 | 13.7 | 1.2 | 31.9 | 5.8 | C | A |
|  | 2094 | Queensway/Sutton Rd | 1018 | 1019 | 64 | 55.4 | 6.9 | 7.2 | 0.0 | 0.0 | A | A |
|  | 2102 | Queensway/Baxter Avenue | 679 | 629 | 162.9 | 56.9 | 77 | 4.1 | 83.3 | 40.9 | F | E |
|  | 2105 | Queensway/Victoria Avenue | 1052 | 999 | 76.3 | 64.9 | 5.5 | 4 | 6.3 | 5.6 | A | A |
|  | 2121 | Queensway/London Road | 707 | 649 | 58.9 | 61.6 | 12 | 13.7 | 30.5 | 34.9 | D | D |
|  | 2131 | North Rd/London Rd | 565 | 548 | 142 | 160 | 11 | 12 | 35.7 | 36.9 | D | D |
|  | 2141 | Southchurch/Marine | 899 | 909 | 41 | 46 | 1 | 1 | 9.5 | 9.4 | A | A |
|  | 3031 | Southchurch Av/Queensway | 793 | 792 | 0 | 0 | 0 | 0 | 0.5 | 0.3 | A | A |
|  | 3043 | Westclifi/Station Rd | 431 | 438 | 3 | 2 | 0 | 0 | 1.0 | 1.0 | A | A |
|  | 3065 | Princes/Queens | 65 | 50 | 370 | 303 | 8 | 7 | 20.4 | 18.8 | C | C |
|  | 30514 | Milton/St Johns | 289 | 283 | 31 | 41 | 1 | 1 | 2.9 | 2.9 | A | A |
|  | 4101 | Victoria Av/Great Eastern Av | 645 | 638 | 127 | 41 | 6 | 3 | 16.5 | 17.0 | B | B |
|  | 4102 | Victoria Av/Carnarvon Rd | 74 | 44 | 111 | 73 | 5 | 4 | 16.5 | 10.7 | B | B |
|  | 4108 | Carnarvon Road / Tunbridge Rd | 74 | 44 | 3 | 2 | 0 | 0 | 1.0 | 1.0 | B | B |
|  | 4109 | Carnarvon Road / SBC Offices | 126 | 122 | 7 | 9 | 0 | 0 | 0.5 | 0.5 | A | A |
|  | 4103 | Victoria Av/B1015 | 1247 | 1237 | 215.4 | 209.5 | 30.4 | 35.1 | 76.3 | 87.1 | E | F |
|  | 4104 | East Street/Penhurst Av | 543 | 549 | 50.4 | 68.5 | 1 | 2.5 | 2.8 | 5.0 | A | A |
|  | 4105 | East Street/St Benet's Rd | 537 | 537 | 19 | 29.3 | 0.3 | 1.2 | 0.6 | 1.5 | A | A |
|  | 4106 | East Street/Tickfield Av | 541 | 541 | 28.2 | 45.5 | 0.1 | 0.9 | 0.7 | 2.4 | A | A |
|  | 1000 | Eastern Ave/Bournemouth Park Rd | 1848 | 1691 | 47.1 | 204.8 | 2.1 | 27.6 | 2.9 | 25.4 | A | C |
|  | OVERALL N | NETWORK TOTALS | 13779 | 13528 | 53.3 | 70.2 | 3.7 | 5.2 | 30.2 | 29.7 | D | D |
| $\begin{aligned} & \text { O} \\ & \hline 0 \\ & 1 \\ & \hline 0 \\ & 00 \end{aligned}$ | 2011 | Queensway/Chancellor | 790 | 762 | 27.9 | 29.7 | 0.2 | 0.2 | 4.3 | 4.4 | A | A |
|  | 2022 | Heygate/Chichester | 315 | 223 | 17.3 | 13.8 | 0.2 | 0.1 | 3.9 | 3.4 | A | A |
|  | 2024 | Pier Hill/Marine Parade | 657 | 662 | 33.6 | 31.7 | 0.3 | 0.2 | 11.3 | 11.1 | B | B |
|  | 2041 | Alexandra/Clarence | 402 | 384 | 58 | 56.4 | 10 | 9.8 | 0.0 | 0.0 | A | A |
|  | 2042 | Cliftown/Clarence | 335 | 342 | 81.7 | 194.8 | 15.8 | 55.8 | 7.9 | 6.5 | A | A |
|  | 2051 | Chichester/Tylers | 372 | 324 | 3.3 | 1.3 | 0 | 0 | 35.1 | 39.9 | D | D |
|  | 2056 | Queensway/York Rd | 683 | 779 | 206.9 | 168 | 58 | 55 | 37.8 | 34.6 | D | C |
|  | 2065 | Queensway/Whitegate Road | 0 | 769 | 0 | 39 | 0 | 0.1 | 0.0 | 0.3 | 0 | A |
|  | 2081 | Queensway/Chichester Road | 903 | 963 | 44.4 | 46.4 | 8.7 | 8.2 | 28.6 | 26.9 | C | C |
|  | 2083 | Chichester/Southchurch | 189 | 287 | 101.2 | 54.8 | 35.3 | 3.6 | 52.3 | 12.3 | D | B |
|  | 2094 | Queensway/Sutton Rd | 1074 | 1201 | 66.6 | 61.9 | 11 | 8.9 | 0.0 | 0.0 | A | A |
|  | 2102 | Queensway/Baxter Avenue | 809 | 809 | 162.5 | 127.6 | 98.9 | 21.4 | 49.1 | 43.9 | E | E |
|  | 2105 | Queensway/Victoria Avenue | 1103 | 1147 | 86 | 84 | 9 | 8 | 8.4 | 7.7 | A | A |
|  | 2121 | Queensway/London Road | 871 | 852 | 51 | 56 | 11 | 12 | 31.4 | 38.1 | D | E |
|  | 2131 | North Rd/London Rd | 609 | 623 | 114 | 152 | 6 | 11 | 36.5 | 38.1 | D | D |
|  | 2141 | Southchurch/Marine | 913 | 931 | 41 | 48 | 1 | 1 | 11.7 | 11.6 | B | B |
|  | 3031 | Southchurch Av/Queensway | 866 | 869 | 0 | 0 | 0 | 0 | 0.4 | 0.4 | A | A |
|  | 3043 | Westclif/Station Rd | 538 | 539 | 8 | 6 | 0 | 0 | 1.5 | 1.5 | A | A |
|  | 3065 | Princes/Queens | 94 | 98 | 463 | 362 | 15 | 12 | 26.0 | 25.0 | D | C |
|  | 30514 | Milton/St Johns | 289 | 294 | 175 | 59 | 23 | 2 | 10.9 | 3.9 | B | A |
|  | 4101 | Victoria Av/Great Eastern Av | 701 | 748 | 125 | 46 | 6 | 3 | 13.8 | 13.9 | B | B |
|  | 4102 | Victoria Av/Carnarvon Rd | 785 | 841 | 186 | 101 | 8 | 8 | 21.8 | 21.0 | C | c |
|  | 4108 | Carnarvon Road / Tunbridge Rd | 106 | 98 | 7.5 | 5.9 | 0 | 0 | 1.5 | 1.5 | C | C |
|  | 4109 | Carnarvon Road / SBC Offices | 154 | 158 | 7.4 | 9.2 | 0 | 0 | 0.5 | 0.7 | A | A |
|  | 4103 | Victoria Av/B1015 | 1335 | 1387 | 412.5 | 293.8 | 91.4 | 67.1 | 111.3 | 107.5 | F | F |
|  | 4104 | East Street/Penhurst Av | 577 | 592 | 67.9 | 85.8 | 1.9 | 5.4 | 4.0 | 8.4 | A | A |
|  | 4105 | East Street/St Benet's Rd | 563 | 575 | 22.5 | 39.4 | 0.7 | 3 | 1.0 | 3.1 | A | A |
|  | 4106 | East Street/Tickfield Av | 563 | 578 | 42.6 | 71.9 | 0.6 | 3.6 | 1.6 | 6.2 | A | A |
|  | 1000 | Eastern Ave/Bournemouth Park Rd | 1810 | 1639 | 180.8 | 304.3 | 5.3 | 60.5 | 4.8 | 40.2 | A | D |
|  | OVERALL NETWORK TOTALS |  | 15158 | 15529 | 166.3 | 65.8 | 43.8 | 7.8 | 72.3 | 36.1 | F | E |

The network performance comparison for the AM peak is shown in Table 3.2 below. The light blue shaded cells represent the optimal performer for each measure.

Table 3.2 - Network Performance Comparison - AM Peak

| Measure | DM | DS | \%Diff |
| :--- | ---: | ---: | ---: |
| Remaining Vehicles in Network | 1067 | $\mathbf{7 4 4}$ | $-43 \%$ |
| Processed Vehicles | $\mathbf{5 0 4 8 4}$ | 50202 | $-1 \%$ |
| Total Distance Travelled (mi) | $\mathbf{2 7 6 6 0 . 0}$ | 27401.9 | $-1 \%$ |
| Total Travel Time (h) | 2214.4 | $\mathbf{2 0 0 0 . 3}$ | $-11 \%$ |
| Total Network Delay (h) | 1221.0 | $\mathbf{1 0 1 6 . 7}$ | $-20 \%$ |
| Average Travel Time (mins) | 2.58 | $\mathbf{2 . 3 6}$ | $-9 \%$ |
| Average Delay Time (mins) | 1.42 | $\mathbf{1 . 2 0}$ | $-19 \%$ |
| Total Stopped Delay (h) | 845.8 | $\mathbf{7 0 4 . 4}$ | $-20 \%$ |
| Average Stopped Delay (s) | 59.1 | $\mathbf{4 9 . 8}$ | $-19 \%$ |
| Number of Stops | 96499.5 | $\mathbf{8 0 1 8 6 . 1}$ | $-20 \%$ |
| Average Number of Stops | 1.9 | $\mathbf{1 . 6}$ | $-19 \%$ |
| Average Network Speed (mph) | 12.5 | $\mathbf{1 3 . 7}$ | 99 |
| Latent Demand | $\mathbf{1 6 9}$ | 235 | $28 \%$ |
| Latent Delay (h) | 166.7 | $\mathbf{1 0 4 . 2}$ | $-60 \%$ |
| Latent Delay per vehicle (s) | 3560.3 | $\mathbf{1 5 9 9 . 5}$ | $-123 \%$ |

Table 3.2 shows that the DS results in the least distance travelled, the least number of stops and the highest average speed. The total network delay and travel time reduce by $20 \%$ and $11 \%$ respectively with the DS scheme.

### 3.3 PM Peak

The junction performance comparison for the PM peak is shown in Table 3.3 below for the modelled peak hour period, for volume, average queue length in meters, delay in seconds and the Level of Service (LOS). The full output for all junctions and time periods is shown in Appendix B.

Table 3.3 shows that the DS processes more traffic than the DM at all junctions. It also shows that as a result of processing more traffic, the average queue length, average delay and LOS increase at the majority of junctions. However, in the shoulder hours the DS does perform better than the DM and overall during the peak period provides a benefit over the DM as shown in Appendix B.

Table 3.3- Junction Comparison-2021 PM Peak

| Time | Node | Description | Volume |  | Q Length (m) Max |  | Q Length (m) Average |  | Delay (s) |  | LOS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | DM | DS |
| $\begin{aligned} & \text { ¢ } \\ & \\ & 1 \\ & 8 \\ & \hline \end{aligned}$ | 2011 | Queensway/Chancellor | 632 | 814 | 10.8 | 20.9 | 0.1 | 0.2 | 3.0 | 4.3 | A | A |
|  | 2022 | Heygate/Chichester | 210 | 327 | 38.6 | 31.1 | 2.6 | 0.8 | 7.1 | 5.5 | A | A |
|  | 2024 | Pier Hill/Marine Parade | 409 | 617 | 22.7 | 35.7 | 0.8 | 0.3 | 11.0 | 10.2 | B | B |
|  | 2041 | Alexandra/Clarence | 311 | 545 | 61 | 50.4 | 8.6 | 8.4 | 0.0 | 0.0 | A | A |
|  | 2042 | Clifftown/Clarence | 224 | 365 | 38.1 | 126.8 | 4.2 | 32.2 | 6.5 | 44.6 | A | E |
|  | 2051 | Chichester/Tylers | 205 | 322 | 4.9 | 3.7 | 0.4 | 0 | 74.7 | 25.3 | E | C |
|  | 2056 | Queensway/York Rd | 584 | 719 | 243.9 | 235.7 | 74.3 | 59.5 | 32.0 | 20.5 | C | C |
|  | 2065 | Queensway/Whitegate Road | 0 | 720 | 0 | 27.8 | 0 | 0.1 | 0.0 | 0.1 | 0 | A |
|  | 2081 | Queensway/Chichester Road | 969 | 982 | 44 | 48.2 | 6.2 | 6.2 | 24.5 | 23.9 | C | C |
|  | 2083 | Chichester/Southchurch | 82 | 111 | 110.5 | 39.7 | 44 | 1.2 | 92.1 | 6.7 | F | A |
|  | 2094 | 4 Queensway/Sutton Rd | 1179 | 1330 | 67.1 | 68.6 | 6 | 24.1 | 0.0 | 0.0 | A | A |
|  | 2102 | Queensway/Baxter Avenue | 756 | 836 | 165.4 | 110.6 | 106.9 | 13.6 | 66.5 | 70.5 | F | F |
|  | 2105 | Queensway/Victoria Avenue | 1091 | 1200 | 80.3 | 87.5 | 6.6 | 6.9 | 5.7 | 6.7 | A | A |
|  | 2121 | Queensway/London Road | 816 | 987 | 52.6 | 90.2 | 12.5 | 17 | 33.0 | 34.7 | D | D |
|  | 2131 | North Rd/London Rd | 550 | 747 | 59 | 130 | 2 | 9 | 31.4 | 36.1 | C | D |
|  | 2141 | Southchurch/Marine | 681 | 864 | 68 | 82 | 11 | 29 | 24.3 | 51.5 | C | D |
|  | 3031 | Southchurch Av/Queensway | 777 | 884 | 0 | 0 | 0 | 0 | 0.4 | 0.4 | A | A |
|  | 3043 | Westclif/Station Rd | 321 | 504 | 3 | 6 | 0 | 0 | 0.9 | 1.3 | A | A |
|  | 3065 | Princes/Queens | 66 | 91 | 513 | 379 | 29 | 11 | 45.5 | 22.5 | E | C |
|  | 30514 | Milton/St Johns | 247 | 348 | 21 | 18 | 3 | 0 | 8.7 | 1.8 | A | A |
|  | 4101 | Victoria Av/Great Eastern Av | 540 | 698 | 98 | 41 | 4 | 4 | 13.1 | 12.2 | B | B |
|  | 4102 | Victoria Av/Carnarvon Rd | 65 | 87 | 103 | 95 | 6 | 11 | 16.6 | 22.9 | B | C |
|  | 4108 | Carnarvon Road / Tunbridge Rd | 65 | 87 | 3 | 6 | 0 | 0 | 0.9 | 1.3 | B | C |
|  | 4109 | Carnarvon Road / SBC Offices | 128 | 194 | 8 | 30 | 0 | 0 | 0.9 | 4.8 | A | A |
|  | 4103 | Victoria Av/B1015 | 1193 | 1332 | 513 | 346 | 250.1 | 75.2 | 198.2 | 100.5 | F | F |
|  | 4104 | East Street/Penhurst Av | 556 | 630 | 95.5 | 80.5 | 8.8 | 8.8 | 13.9 | 12.8 | B | B |
|  | 4105 | East Street/St Benet's Rd | 543 | 599 | 53.1 | 40.1 | 7.3 | 5.8 | 7.0 | 5.2 | A | A |
|  | 4106 | East Street/Tickfield Av | 544 | 602 | 389.6 | 162.2 | 39.6 | 28.2 | 40.5 | 25.9 | E | D |
|  | 1000 | Eastern Ave/Bournemouth Park Rd | 1437 | 1747 | 18 | 143.4 | 0.2 | 16.3 | 0.8 | 17.8 | A | C |
|  | OVERALL N | NETWORK TOTALS | 13175 | 16043 | 63.3 | 65 | 17.8 | 4.4 | 46.5 | 48.4 | E | E |
| $\begin{aligned} & \text { O} \\ & \text { © } \\ & \text { ' } \\ & \text { N } \end{aligned}$ | 2011 | Queensway/Chancellor | 632 | 815 | 10.8 | 11.2 | 0.1 | 0 | 3.0 | 3.6 | A | A |
|  | 2022 | Heygate/Chichester | 210 | 326 | 38.6 | 64.1 | 2.6 | 9 | 7.1 | 13.5 | A | B |
|  | 2024 | Pier Hill/Marine Parade | 409 | 557 | 22.7 | 59.2 | 0.8 | 6.9 | 11.0 | 15.5 | B | C |
|  | 2041 | Alexandra/Clarence | 311 | 541 | 61 | 80.3 | 8.6 | 13.8 | 0.0 | 0.0 | A | A |
|  | 2042 | Clifftown/Clarence | 224 | 377 | 38.1 | 125.1 | 4.2 | 34.7 | 6.5 | 30.2 | A | D |
|  | 2051 | Chichester/Tylers | 205 | 328 | 4.9 | 3.3 | 0.4 | 0 | 74.7 | 29.0 | E | C |
|  | 2056 | Queensway/York Rd | 584 | 718 | 243.9 | 259.7 | 74.3 | 70.3 | 32.0 | 21.3 | C | C |
|  | 2065 | Queensway/Whitegate Road | 0 | 720 | 0 | 31.2 | 0 | 0.2 | 0.0 | 0.2 | 0 | A |
|  | 2081 | Queensway/Chichester Road | 969 | 999 | 44 | 51.5 | 6.2 | 6.5 | 24.5 | 22.7 | C | C |
|  | 2083 | Chichester/Southchurch | 82 | 111 | 110.5 | 37 | 44 | 1.6 | 92.1 | 8.1 | F | A |
|  | 2094 | Queensway/Sutton Rd | 1179 | 1330 | 67.1 | 70 | 6 | 23.3 | 0.0 | 0.0 | A | A |
|  | 2102 | Queensway/Baxter Avenue | 756 | 798 | 165.4 | 115.1 | 106.9 | 14.9 | 66.5 | 70.3 | F | F |
|  | 2105 | Queensway/Victoria Avenue | 1091 | 1177 | 80 | 98 | 7 | 9 | 5.7 | 7.5 | A | A |
|  | 2121 | Queensway/London Road | 816 | 908 | 53 | 65 | 13 | 15 | 33.0 | 32.0 | D | D |
|  | 2131 | North Rd/London Rd | 550 | 701 | 59 | 105 | 2 | 5 | 31.4 | 33.9 | C | C |
|  | 2141 | Southchurch/Marine | 681 | 842 | 68 | 88 | 11 | 46 | 24.3 | 77.8 | C | E |
|  | 3031 | Southchurch Av/Queensway | 777 | 944 | 0 | 0 | 0 | 0 | 0.4 | 0.3 | A | A |
|  | 3043 | Westcliff/Station Rd | 321 | 464 | 3 | 4 | 0 | 0 | 0.9 | 1.3 | A | A |
|  | 3065 | Princes/Queens | 66 | 89 | 513 | 478 | 29 | 15 | 45.5 | 26.5 | E | D |
|  | 30514 | Milton/St Johns | 247 | 345 | 21 | 5 | 3 | 0 | 8.7 | 1.7 | A | A |
|  | 4101 | Victoria Av/Great Eastern Av | 540 | 644 | 98 | 37 | 4 | 3 | 13.1 | 10.6 | B | B |
|  | 4102 | Victoria Av/Carnarvon Rd | 618 | 738 | 103 | 102 | 6 | 10 | 16.6 | 24.0 | B | C |
|  | 4108 | Carnarvon Road / Tunbridge Rd | 65 | 93 | 2.9 | 4.3 | 0 | 0 | 0.9 | 1.3 | B | C |
|  | 4109 | Carnarvon Road / SBC Offices | 128 | 154 | 8.3 | 17.9 | 0 | 0.1 | 0.9 | 2.6 | A | A |
|  | 4103 | Victoria Av/B1015 | 1193 | 1335 | 513 | 472.4 | 250.1 | 119.9 | 198.2 | 113.4 | F | F |
|  | 4104 | East Street/Penhurst Av | 556 | 658 | 95.5 | 91 | 8.8 | 14.2 | 13.9 | 18.1 | B | C |
|  | 4105 | East Street/St Benet's Rd | 543 | 640 | 53.1 | 48.1 | 7.3 | 11.5 | 7.0 | 9.1 | A | A |
|  | 4106 | East Street/Tickfield Av | 544 | 642 | 389.6 | 346.1 | 39.6 | 62.6 | 40.5 | 49.1 | E | E |
|  | 1000 | Eastern Ave/Bournemouth Park Rd | 1437 | 1809 | 18 | 194.7 | 0.2 | 29.8 | 0.8 | 24.6 | A | C |
|  | OVERALL NETWORK TOTALS |  | 13175 | 15899 | 63.3 | 51.7 | 17.8 | 2.4 | 46.5 | 53.2 | E | F |

The network performance comparison for the PM peak is shown in Table 3.4 below. The light blue shaded cells represent the optimal performer for each measure.

Table 3.4 - Network Performance Comparison - PM Peak

| Measure | DM | DS | \%Diff |
| :--- | ---: | ---: | ---: |
| Remaining Vehicles in Network | 818 | $\mathbf{7 5 7}$ | $-8 \%$ |
| Processed Vehicles | 53815 | 55123 | $2 \%$ |
| Total Distance Travelled (mi) | 30447.5 | $\mathbf{3 0 9 9 6 . 0}$ | $2 \%$ |
| Total Travel Time (h) | 2680.7 | $\mathbf{2 4 3 6 . 2}$ | $-10 \%$ |
| Total Network Delay (h) | 1599.4 | $\mathbf{1 3 3 6 . 2}$ | $-20 \%$ |
| Average Travel Time (mins) | 2.94 | $\mathbf{2 . 6 2}$ | $-13 \%$ |
| Average Delay Time (mins) | 1.76 | $\mathbf{1 . 4 3}$ | $-22 \%$ |
| Total Stopped Delay (h) | 1097.7 | $\mathbf{8 9 6 . 0}$ | $-23 \%$ |
| Average Stopped Delay (s) | 72.3 | $\mathbf{5 7 . 7}$ | $-25 \%$ |
| Number of Stops | 117296.1 | $\mathbf{9 9 2 9 7 . 5}$ | $-18 \%$ |
| Average Number of Stops | 2.1 | $\mathbf{1 . 8}$ | $-21 \%$ |
| Average Network Speed (mph) | 11.4 | $\mathbf{1 2 . 7}$ | $11 \%$ |
| Latent Demand | 372 | $\mathbf{2 6 3}$ | $-41 \%$ |
| Latent Delay (h) | 428.7 | 278.9 | $-54 \%$ |
| Latent Delay per vehicle (s) | 4143.1 | $\mathbf{3 8 1 3 . 8}$ | $-9 \%$ |

Table 3.4 shows that the DS results in the highest number of processed vehicles, the least number of stops and the highest average speed. The total network delay and travel time reduce by $20 \%$ and $10 \%$ respectively with the DS scheme.

## 4 Economics

The economics assessment has been based on a spreadsheet assessment over a 60 year period consistent with previous assessment. Values of time from the March 2017 WebTAG Data Book have been applied to the model forecasts in order to calculate the monetised value of journey time savings.

The costs include all construction costs for improvements to provide right turns at Bournemouth Park Road, Whitegate Road and York Road in the DS scenario. The costs represent both construction costs and design fees.

### 4.1 Do Something Scheme

The economic summary for DS scheme is provided below:

Assessment year
Journey time benefits over assessment period Journey time benefits over assessment period discounted to 2010

PVB
PVC

60 years
$£ 185,248,132 £$ in 2010 market prices
£45,814,094 £ in 2010 market prices
£45,814,094 £ in 2010 market prices discounted to 2010
£2,299, $194 £$ in 2010 market prices discounted to 2010

BCR

### 4.2 BCR Sensitivity Testing

In order to determine the robustness of the BCR, sensitivity testing has been undertaken on the DS scenario around the journey time savings and the scheme cost. Table 4.1 below shows the journey time savings reducing in 2.5 second intervals from 13.4 and 19.3 seconds in the AM and PM peaks respectively. The table shows that the BCR remains above 2 even if the journey time saving in the AM peak drops below 1 s and the PM below 7s. This is due to the relatively low scheme cost and large number of vehicles affected.

Table 4.1 - Impact of reducing Peak Journey Time Savings on BCR

| JT Saving/Veh (s) |  |  |
| ---: | ---: | ---: |
| AM | PM | BCR |
| 13.4 | 19.3 | 19.9 |
| 10.9 | 16.8 | 17.9 |
| 8.4 | 14.3 | 15.8 |
| 5.9 | 11.8 | 13.7 |
| 3.4 | 9.3 | 11.7 |
| 0.9 | 6.8 | 9.6 |

Table 4.2 shows the impact of increasing the costs by $£ 0.5 \mathrm{~m}$ increments on the BCR.

Table 4.2 - Impact of increasing costs on BCR

| PVC | PVB | BCR |
| :---: | :---: | ---: |
| $£ 2,299,194$ | $£ 45,814,094$ | 19.9 |
| $£ 2,799,194$ | $£ 45,814,094$ | 16.6 |
| $£ 3,299,194$ | $£ 45,814,094$ | 14.2 |
| $£ 3,799,194$ | $£ 45,8144,094$ | 12.5 |
| $£ 4,299,194$ | $£ 45,814,094$ | 11.1 |
| $£ 4,799,194$ | $£ 45,814,094$ | 10.0 |
| $£ 5,299,194$ | $£ 45,814,094$ | 9.1 |

The table shows that even with a cost of over $£ 5 \mathrm{~m}$ the BCR would still be above 2 based on the predicted journey time savings.

### 4.3 Summary of Economic Assessment

The junction improvements in the DS scenarios result in a high BCR of 19.9. The high BCR is a result of journey time savings in the DS over the DM, mainly in the PM peak compared to a relatively low construction cost.

The sensitivity testing shows that minimal journey time savings still result in a BCR above 2 as the cost is low. Similarly, even if the cost increases by a further $£ 3 m$ the BCR is still above 2, indicating that the scheme is predicted to offer excellent value for money.

## 5 Summary

Mott MacDonald was commissioned by Southend Borough Council (SBC) to assess improvement schemes on the Queensway to provide new right turn access into key car parks accessed from Whitegate Road and York Road and a scheme to signalise the junction of Eastern Avenue / Bournemouth Park Road and provide a right turn out from Bournemouth Park Road. The assessment made use of an existing VISSIM microsimulation model of the Town Centre that was used in a business case last year in addition to the highway model of the Southend-on-Sea Multi Modal Model (SoSMMM).

The Town Centre VISSIM model was validated for a 2014 base and reported in the Southend-on-Sea S-CATS VISSIM Modelling Assessment report of April 2016. Therefore, as the base model has already been validated forecast models have been prepared for 2021 based on a combination of TEMPRO growth and reassignment information from the Highway Assignment model of the SoSMMM.

The VISSIM model routes traffic based on dynamic assignment within the Town Centre. This allows for reassignment of traffic given changes in infrastructure. In order to incorporate the Bournemouth Park Road junction the model was extended to incorporate an isolated section of network to cover Eastern Avenue and Bournemouth Park Road. This section was then based on static assignment as it contains no route choice. The methodology was adopted as the section is too far from the main model to be incorporated into the dynamic model but retaining it within the same model as an isolated section allows for the network performance results to be collected from the same model.

The 2021 Do Something scheme provides 3 infrastructure improvements as follows:

- Queensway Southbound right turn to Whitegate Road to provide easier access to the Warrier Square Car Park;
- Queensway Southbound right turn to York Road to provide easier access to the York Road Car Park. Note this also involves reversing the staggered pedestrian crossing over Queensway; and,
- Provide a northbound right turn from Bournemouth Park Road onto Eastern Avenue and signalise the junction.

In addition the traffic signals on Victoria Avenue have been optimised in LinSig to provide co-ordinated control compared to the existing Vehicle Actuated (VA) control.
In the AM Peak the junction performance shows that the DS processes more traffic than the DM at nearly all junctions, particularly in the 0830-0900 period. It also shows that the average queue length, average delay and LOS reduce at the majority of junctions. The overall delay reduces with the DS and results in an overall LOS of $E$ for the network compared to a LOS of $F$ in the DM.

The network performance shows that the DS results in the least distance travelled, the least number of stops and the highest average speed. The total network delay and travel time reduce by $20 \%$ and $11 \%$ respectively with the DS scheme.

In the PM Peak the junction performance shows that the DS processes more traffic than the DM at all junctions. It also shows that as a result of processing more traffic, the average queue length, average delay and LOS increase at the majority of junctions. However, in the shoulder hours the DS does perform better than the DM and overall during the peak period provides a benefit over the DM.

The network performance shows that the DS results in the highest number of processed vehicles, the least number of stops and the highest average speed. The total network delay and travel time reduce by $20 \%$ and $10 \%$ respectively with the DS scheme.

The economics assessment has been based on a spreadsheet assessment over a 60 year period consistent with previous assessment. Values of time from the March 2017 WebTAG Data Book have been applied to the model forecasts in order to calculate the monetised value of journey time savings.

The junction improvements in the DS scenarios result in a high BCR of 19.9. The high BCR is a result of journey time savings in the DS over the DM, mainly in the PM peak compared to a relatively low construction cost.

The sensitivity testing shows that minimal journey time savings still result in a BCR above 2 as the cost is low. Similarly, even if the cost increases by a further $£ 3 \mathrm{~m}$ the BCR is still above 2, indicating that the scheme is predicted to offer excellent value for money.

## A. Appendix A - Scheme Drawings





## B. Appendix B - 2021 Junction Performance Comparisons

|  | ＂as | nemamm | ＂memmemen |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | minmimem | \％ewn |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | kneme |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  | $\stackrel{\text { a }}{\text { a }}$ |  |  |  |  |  |  |
|  |  | hame |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | come | 隹 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 隹 |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Name | Simmemimem |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | mill |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | ， |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | $\bigcirc$ |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  | mante |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | cmead |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 隹 |  |  |  |  | ， | $\cdots$ |  | ， |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | chememsumbus |  |  |  |  | $\bigcirc$ |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  | ． |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 最 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | mimmem |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | － |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | ， |  | $\square$ |  | － |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | neareme | Sumembemem |  | ． |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | ${ }_{\text {as }}^{\text {a }}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 隹 |  |  |  |  | $\square$ |  |  |  |  |  |  |
| ${ }^{8}$ |  |  |  |  |  |  |  | 粦 |  |  |  |  |  |  |
|  | $\square$ | ， | Amman |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 隹 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | － |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | $\stackrel{\square}{6}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | wame | \％emensumen |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | \％mammeem |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | centum |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | memotum |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Emantus |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | suc |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Lemens |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Ssembamen |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Cuskemed |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |








|  |  | － | Cmbumembu | $\frac{\text { muss }}{\text { men }}$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 为 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Sumatumenemis |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | crumberme | Nameme |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 价 |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Sticeme | Cumemumememes |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | mimmin |  |  |  |  |  |  |  |  |  |  |  |
|  | 5 |  | mill | Sis |  | － |  | ， |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Naeatum |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 隹 | ${ }^{\text {atin }}$ |  | $\stackrel{\square}{6}$ |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  | $\cdots$ |  | ${ }^{*}$ |  | － |  |  |  |  |  |
|  |  |  |  |  |  | O | $\stackrel{3}{*}$ |  |  |  |  |  |  |  |
|  |  |  | Smsmmomem |  |  | ． |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  | － |  |  |  |  |  |  |
|  |  |  | mombummm |  |  |  |  | － |  | － |  |  |  |  |
|  |  |  | 隹 |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Anamesmatins |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Embume | Sumeasmbumb |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 成 | $\xrightarrow{\text { Nusw }}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | － |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | － |  |  |  |  |  |  |
|  |  |  |  | $\stackrel{* *}{* *}$ |  |  |  | － |  |  |  |  |  |  |
|  |  |  | 践 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | mambumememe |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | － |  |  |  |  |  |  |
|  | ${ }^{23}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | － |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － |  |  |  |  |  |  |  | $\stackrel{\square}{0}$ |  |  |  |  |  |  |
|  |  |  | mamedotmesmem |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 隹 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  | ${ }^{+}$ |  |  |  |  |  |  |
|  |  |  | 隹 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 隹 |  |  |  |  |  |  |  |  |  |  |  |
|  | － |  | 边 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\stackrel{\text { sin }}{\substack{\text { sin }}}$ |  |  |  | $\stackrel{\square}{4}$ |  |  |  |  |  |  |
|  |  |  | 隹 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | ${ }_{\text {wim }}^{\substack{\text { wim } \\ \text { wiw }}}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | come | 为 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  | ${ }^{10}$ | Lin | veman embummen |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | ， |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | （cmmem |  | $\stackrel{\text { min }}{\text { min }}$ |  |  |  | ＂ |  |  |  |  |  | （1） |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | and |  |  |  |  | ． |  |  |  |  |  |  |
|  |  |  | 何 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | maso |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 为 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | min |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | － |  | － |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Empmans |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 隹 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | ， | ${ }^{\text {a }}$ ． |  |  | \％ |  |  |  |
|  |  |  |  |  |  |  |  | $\stackrel{\%}{9}$ |  |  |  |  |  |  |
|  |  |  | 为 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | mammembemmatum |  |  |  |  |  |  |  |  |  |  |  |






Southend on Sea Borough Council
$22^{\text {nd }}$ June 2017

## National Productivity Investment Fund

## Dear Karen

On behalf of my Chairman, Christian Brodie, I am writing to offer my support to Southend on Sea Borough Council for your bid for support from the National Productivity Investment Fund (NPIF). With the bid for NPIF complementing previous and current projects which have received Local Growth Funding and further enhancing the conditions for growth in the area, we are very pleased to endorse it.

A fully funded proposal will enable Southend on Sea Borough Council to make improvements in a coherent and functional manner and will squarely align with the South East LEP's aspirations for the area. The positive endorsement from the South East LEP Strategic Board on $9^{\text {th }}$ J une 2017 confirms that we are fully supportive of your ambition.

At the South East LEP we understand the importance for the area to continue to improve road and public transport infrastructure to continue developing and enhancing key travel destinations in and around the town centre and sea front. We wish you every success with your application for funding and will be pleased to help build on its success in the future.

Yours sincerely


Adam Bryan
Managing Director
South East LEP

At SELEP we understand the importance We wish you every success with your application for funding.
Yours sincerely

Adam Bryan

## Annex 4 - Scheme Impact Pro Forma for Small Project Bids

NPIF




## Appendix 7

## Quantified Risk Assessment

In order to assess the potential impact of unexpected eventualities on the cost of scheme implementation, a quantified risk assessment (QRA) has been undertaken.

## Works Cost

Cost elements have been prepared identifying the events which have a reasonable likelihood of impacting on scheme cost. For each of these items of risk a probability of that event occurring has been assessed and a range of costs defined. These costs include the most likely value of extra costs should the event occur and an upper and lower limit of those costs. The cost elements are displayed in Table 1.

Table 1 - Cost Elements

| Cost elements | Base Case | Minimum | Most <br> Likely | Maximum | Minimum | Most Likely | Maximum | Sampled |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Preliminaries and Traffic Management | 192,000 | 100\% | 100\% | 130\% | 192,000 | 192,000 | 249,600 | 201,600 |
| Site Clearance | 27,264 | 95\% | 100\% | 105\% | 25,901 | 27,264 | 28,627 | 27,264 |
| Road Restraint Systems | 40,466 | 95\% | 100\% | 120\% | 38,443 | 40,466 | 48,559 | 41,478 |
| Drainage and Service Ducts | 111,024 | 95\% | 100\% | 135\% | 105,473 | 111,024 | 149,882 | 116,575 |
| Earthworks | 60,282 | 95\% | 100\% | 130\% | 57,268 | 60,282 | 78,367 | 62,794 |
| Pavements | 528,239 | 95\% | 100\% | 125\% | 501,827 | 528,239 | 660,299 | 545,847 |
| Kerbs and Footways | 216,985 | 95\% | 100\% | 130\% | 206,136 | 216,985 | 282,081 | 226,026 |
| Traffic Signs and Road Markings | 161,021 | 95\% | 100\% | 120\% | 152,970 | 161,021 | 193,225 | 165,047 |
| Road Lighting Columns, Brackets and CCTV Masts | 67,111 | 100\% | 100\% | 130\% | 67,111 | 67,111 | 87,244 | 70,467 |
| Traffic Signals | 107,871 | 100\% | 100\% | 125\% | 107,871 | 107,871 | 134,839 | 112,366 |
| VMS | 675,000 | 95\% | 100\% | 150\% | 641,250 | 675,000 | 1,012,500 | 725,625 |
| Working Enhancements | 0 | 95\% | 100\% | 110\% | 0 | 0 | 0 | 0 |
| Contract Uplift | 0 | 100\% | 100\% | 110\% | 0 | 0 | 0 | 0 |
| Landscaping | 37,141 | 100\% | 100\% | 150\% | 37,141 | 37,141 | 55,712 | 40,236 |

Based on this a Monte Carlo assessment has been carried out using @RISK software. For each of the above cost elements a triangular probability distribution has been defined. These, combined with the discrete probability distribution for the chance of that risk's occurrence generated a probability distribution for that risk.

Through the use of 5,000 sampling iterations from each of the distributions defined above, a combined risk probability distribution has been developed, setting out the expected overall cost of risk to the scheme. This distribution is illustrated below.


| Summary Statistics for Total Project Cost |  |  |  |
| :--- | :--- | :--- | :--- |
| Statistics | Percentile |  |  |
| Minimum | $2,177,443$ | $\mathbf{5 \%}$ | $2,240,149$ |
| Maximum | $2,636,956$ | $\mathbf{1 0 \%}$ | $2,253,830$ |
| Mean | $2,335,324$ | $\mathbf{1 5 \%}$ | $2,265,012$ |
| Std Dev | 68,678 | $\mathbf{2 0 \%}$ | $2,274,337$ |
| Variance | 4716620385 | $\mathbf{2 5 \%}$ | $2,283,498$ |
| Skewness | 0.646950764 | $\mathbf{3 0 \%}$ | $2,292,654$ |
| Kurtosis | 3.202802699 | $\mathbf{3 5 \%}$ | $2,300,908$ |
| Median | $2,326,615$ | $\mathbf{4 0 \%}$ | $2,309,257$ |
| Mode | $2,336,195$ | $\mathbf{4 5 \%}$ | $2,317,715$ |
| Left X | $2,240,149$ | $\mathbf{5 0 \%}$ | $2,326,615$ |
| Left P | $5 \%$ | $\mathbf{5 5 \%}$ | $2,335,513$ |
| Right X | $2,461,787$ | $\mathbf{6 0 \%}$ | $2,344,226$ |
| Right P | $95 \%$ | $\mathbf{6 5 \%}$ | $2,354,461$ |
| Diff X | 221,638 | $\mathbf{7 0 \%}$ | $2,365,782$ |
| Diff P | $90 \%$ | $\mathbf{7 5 \%}$ | $2,377,737$ |
| \#Errors | 0 | $\mathbf{8 0 \%}$ | $2,390,902$ |
| Filter Min | Off | $\mathbf{8 5 \%}$ | $2,407,908$ |
| Filter Max | Off | $\mathbf{9 0 \%}$ | $2,430,889$ |
| \#Filtered | 0 | $\mathbf{9 5 \%}$ | $2,461,787$ |



| Change in Output Statistic for Total Project Cost |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Rank | Name | Lower | Upper |  |
| 1 | VMS / Sampled | $2,258,365$ | $2,459,913$ |  |
| 2 | Pavements / Sampled | $2,297,340$ | $2,393,049$ |  |
| 3 | Kerbs and Footways / Sampled | $2,317,634$ | $2,362,139$ |  |
| 4 | Preliminaries and Traffic Management / Sampled | $2,323,012$ | $2,357,315$ |  |
| 5 | Drainage and Service Ducts / Sampled | $2,325,577$ | $2,352,295$ |  |
| 6 | Earthworks / Sampled | $2,326,741$ | $2,345,238$ |  |
| 7 | Traffic Signs and Road Markings / Sampled | $2,329,229$ | $2,345,807$ |  |
| 8 | Road Lighting Columns, Brackets and CCTV Masts / | $2,329,165$ | $2,344,762$ |  |
| 9 | Sampled | $2,329,310$ | $2,344,404$ |  |
| 10 | Traffic Signals / Sampled | $2,331,650$ | $2,344,057$ |  |
|  | Site Clearance / Sampled |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

According to this distribution, percentile values have been extracted. The value is calculated as $£ 237,383$.


[^0]:    http://www.southend.gov.uk/info/200420/development_plan_documents/391/southend_central_area_action_plan_scaap

